< redhat

Zero

Gary Benson
Senior Software Engineer



‘_ redhat

HotSpot

HotSpot is the Java virtual machine of OpendDK et al
One of two interpreters selected at build time:
Template interpreter
C++ interpreter
Optionally, one of two JITs selected at runtime:
Client (aka C1)
Server (aka C2)



‘_ redhat

Method dispatch

Each method is represented by a methodOop
Each method has an entry point:
Initialized to address of one of fourteen interpreter method entries
Replaced with address of compiled code by JIT
To call a method:
Process the arguments as per the calling convention
Jump to the entry point

To call a method from C++, use StubRoutines::call_stub()



‘_ redhat

Interpreter method entries

In reality there are fourteen
We only need to consider two:
normal_entry, the method entry for non-native methods
native_entry, the method entry for native methods
Comparing the template and C++ interpreters:
The entry points for non-native methods are very different

All other entry points are substantially the same



‘_ redhat

A bare minimum port

So what is the bare minimum you need for a port?
An assembler
The call stub
Two method entries
The signature handler generator

A stack walker



‘_ redhat

The normal entry point

Set up the stack frame

Loop:
Call BytecodeInterpreter: :run()
Do what it asked

Tear down the stack frame



‘_ redhat

The problem

The Java stack is interleaved with the ABI stack
We can't access the ABI stack in any meaningful way
Interpreter frames need to be resizable

Locking code relies on pointers being within the ABI stack



‘ redhat

The solution

JavaStack objects wrap a block of memory with stack-like accessors
Each Java thread is initialized with an empty Javastack object

First call stub in a thread allocates half the ABI stack with alloca () and gives it
to the thread's Javastack to manage



‘_ redhat

The native entry point

Set up the stack frame

Call the native function:
Convert arguments from interpreter calling convention to native ABI
Jump to the function's start address
Convert result from native ABI to interpreter result convention

Tear down the stack frame



‘ redhat

libffi

Two stage process:
Call £ffi_prep_cif ()
Takes a list of argument types and a result type
Returns an ££i_cif object
Call £f£i_call()
Takes an ££i_cif object and a list of argument types

The £fi_cif objects are reusable



‘ redhat

Future work

More platforms:

s390, s390x, iab4, arm
Performance:

Profiling

Precompilation: GCJ

Some kind of JIT: LLVM, libjit



‘_ redhat

Questions

Gary Benson
gbenson@redhat.com

http://gbenson.livejournal.com/



